пятница, 5 февраля 2016 г.



Комбинаторикой называется область математики, в которой изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из элементов заданного множества. Составляя комбинации, мы фактически выбираем из этого множества различные элементы и объединяем их в группы по нашим потребностям, поэтому вместо слова "комбинации", часто используют слово "выборки" элементов.
В комбинаторике изучают вопросы о том, сколько комбинаций определенного типа можно составить из данных предметов (элементов).

Рождение комбинаторики как раздела математики связано с трудами Б. Паскаля и П. Ферма по теории азартных игр. Большой вклад в развитие комбинаторных методов внесли Г.В. Лейбниц, Я. Бернулли и Л. Эйлер.

Французский философ, писатель, математик и физик Блез Паскаль (1623–1662) рано проявил свои выдающиеся математические способности. Круг математических интересов Паскаля был весьма разнообразен. Паскаль доказал одну
 из основных теорем проективной геометрии (теорема Паскаля), сконструировал суммирующую машину (арифмометр Паскаля), дал способ вычисления биномиальных коэффициентов (треугольник Паскаля), впервые точно определил и применил для доказательства метод математической индукции, сделал существенный шаг в развитии анализа бесконечно малых, сыграл важную роль в зарождении теории вероятности. В гидростатике Паскаль установил ее основной закон (закон Паскаля). “Письма к провинциалу” Паскаля явились шедевром французской классической прозы.

Готфрид Вильгельм Лейбниц (1646–1716) — немецкий философ, математик, физик и изобретатель, юрист, историк, языковед. В математике наряду с И. Ньютоном разработал дифференциальное и интегральное исчисление. Важный вклад внес в комбинаторику. С его именем, в частности, связаны теоретико-числовые задачи.

Готфрид Вильгельм Лейбниц имел мало внушительную внешность и поэтому производил впечатление довольно невзрачного человека. Однажды в Париже он зашел в книжную лавку в надежде приобрести книгу своего знакомого философа. На вопрос посетителя об этой книге книготорговец, осмотрев его с головы до ног, насмешливо бросил: “Зачем она вам? Неужели вы способны читать такие книги?” Не успел ученый ответить, как в лавку вошел сам автор книги со словами: “Великому Лейбницу привет и уважение!” Продавец никак не мог взять втолк, что перед ним действительно знаменитый Лейбниц, книги которого пользовались большим спросом среди ученых.




 Перестановка.Формула для числа перестановок.

Перестановками называются такие выборки элементов, которые отличаются только порядком расположения элементов, но не самими элементами.

Если перестановки производятся на множестве из n элементов, их число определяется по формуле
                                                Pn = n·(n−1)·(n−2)...3·2·1 = n!

n! - обозначение, которое используют для краткой записи произведения всех натуральных чисел от 1 до n включительно и называют "n-факториал" (в переводе с английского "factor" - "множитель").

Таким образом, общее число перестановок 5-ти книг P5 = 5! = 1·2·3·4·5 = 120, что мы и получили выше. Фактически мы выводили эту формулу для маленького примера. Теперь решим пример побольше.

Задача 1.
 На книжной полке помещается 30 томов. Сколькими способами их можно расставить, чтобы при этом 1-й и 2-й тома не стояли рядом?

Решение.
 Определим общее число перестановок из 30 элементов по формуле P30=30!
 Чтобы вычислить число "лишних" перестановок, сначала определим, сколько вариантов, в которых 2-й том находится рядом с 1-ым справа от него. В таких перестановках 1-ый том может занимать места с первого по 29-е, а 2-й со второго по 30-е - всего 29 мест для этой пары книг. И при каждом таком положении первых двух томов остальные 28 книг могут занимать остальные 28 мест в произвольном порядке. Вариантов перестановки 28 книг P28=28! Всего "лишних" вариантов при расположении 2-го тома справа от 1-го получится 29·28! = 29!.
 Аналогично рассмотрим случай, когда 2-й том расположен рядом с 1-ым, но слева от него. Получается такое же число вариантов 29·28! = 29!.
 Значит всего "лишних" перестановок 2·29!, а нужных способов расстановки 30!−2·29! Вычислим это значение.
 30! = 29!·30; 30!−2·29! = 29!·(30−2) = 29!·28.
 Итак, нам нужно перемножить все натуральные числа от 1 до 29 и еще раз умножить на 28.
Ответ: 2,4757335·1032.

Размещения. Подсчет числа размещений.

Теперь предположим, что у заказчика много книг и невозможно разместить их все на открытых полках. Его просьба состоит в том, что нужно выбрать определенное количество каких-либо книг и разместить их красиво. Красиво получилось или некрасиво это вопрос вкуса заказчика, т.е. он опять хочет посмотреть все варианты и принять решение сам. Наша задача состоит в том, чтобы посчитать количество всех возможных вариантов размещения книг, обоснованно переубедить его и ввести разумные ограничения.

Чтобы разобраться в ситуации, давайте сначала считать, что "много" - это 5 книг, что у нас всего одна полка, и что на ней вмещается лишь 3 тома. Что мы будем делать?
 Выбираем одну из 5-ти книг и ставим на первое место на полке. Это мы можем сделать 5-ю способами. Теперь на полке осталось два места и у нас осталось 4 книги. Вторую книгу мы можем выбрать 4-мя способами и поставить рядом с одной из 5-ти возможных первых. Таких пар может быть 5·4. Осталось 3 книги и одно место. Одну книгу из 3-ёх можно выбрать 3-мя способами и поставить рядом с одной из возможных 5·4 пар. Получится 5·4·3 разнообразных троек. Значит всего способов разместить 3 книги из 5-ти 5·4·3 = 60.

На рисунке представлены только 4 варианта размещения из 60 возможных. Сравните картинки. Обратите внимание, что размещения могут отличаться друг от друга либо только порядком следования элементов, как первые две группы, либо составом элементов, как следующие.

Формула для числа размещений.

Размещениями из n элементов по m (мест) называются такие выборки, которые имея по m элементов, выбранных из числа данных n элементов, отличаются одна от другой либо составом элементов, либо порядком их расположения.

Число размещений из n по m обозначается Anm и определяется по формуле
Anm = n·(n − 1)·(n − 2)·...·(n − m + 1) = n!/(n − m)!

Попробуем вычислить по этой формуле Ann, т.е. число размещений из n по n.
Ann = n·(n-1)·(n-2)·...·(n-n + 1) = n·(n-1)·(n-2)· ... ·1 = n!
 Таким образом, Ann = Pn = n!

Ничего удивительного в том, что число размещений из n по n оказалось равным числу перестановок n элементов, ведь мы использовали для составления размещений всё множество элементов, а значит они уже не могут отличаться друг от друга составом элементов, только порядком их расположения, а это и есть перестановки.

Задача 3.
 Сколькими способами можно расставить 15 томов на книжной полке, если выбирать их из имеющихся в наличии 30-ти книг?

Решение.
 Определим общее число размещений из 30 элементов по 15 по формуле
A3015 = 30·29·28·...·(30−15+1) = 30·29·28·...·16 = 202843204931727360000.
Ответ: 202843204931727360000.

Будете размещать реальные книги? Удачи! Посчитайте, сколько жизней потребуется, чтобы перебрать все варианты.

Задача 4.
 Сколькими способами можно расставить 30 книг на двух полках, если на каждой из них помещается только по 15 томов?

Решение.
Способ I.
 Представим себе, что первую полку мы заполняем так же, как в предыдущей задаче. Тогда вариантов размещения из 30-ти книг по 15 будет A3015 = 30·29·28·...·(30−15+1) = 30·29·28·...·16.
 И при каждом размещении книг на первой полке мы еще P15 = 15! способами можем расставить книги на второй полке. Ведь для второй полки у нас осталось 15 книг на 15 мест, т.е. возможны только перестановки.
 Всего способов будет A3015·P15, при этом произведение всех чисел от 30 до 16 еще нужно будет умножить на произведение всех чисел от 1 до 15, получится произведение всех натуральных чисел от 1 до 30, т.е. 30!
Способ II.
 Теперь представим себе, что у нас была одна длинная полка на 30 мест. Мы расставили на ней все 30 книг, а затем распилили полку на две равные части, чтобы удовлетворить условию задачи. Сколько вариантов расстановки могло быть? Столько, сколько можно сделать перестановок из 30 книг, т.е. P30 = 30!
Ответ: 30!.

Не важно, как вы решаете математическую задачу. Вы её решаете так, как представляете себе свои действия в жизненной ситуации. Важно не отступать от логики в своих рассуждениях, чтобы в любом случае получить верный ответ.

Сочетания
              
Сочетаниями называют комбинации, составленные из n различных элементов по m элементов, которые отличаются хотя бы одним элементом. Число сочетаний
С mn = n! / (m! (n - m)!).
Как видим, в сочетаниях в отличие от размещений не учитывается порядок элементов. Число всех сочетаний из  элементов по  элементов в каждом обозначается  (от начальной буквы французского слова “combinasion”, что значит “сочетание”).

а)      Составьте всевозможные сочетания по 2 элемента без повторений из элементов множества М={а, б, в, г, д}. Для каждого из составленных подмножеств выпишите дополнения - трехэлементные подмножества оставшихся элементов - и сравните число тех и других. Какой вывод можно сделать о числах и ?


Задача:Нас приглашают сыграть в Лото-Миллион. Суть игры в том, что нужно из 49 номеров угадать 6, которые выпадут во время тиража. Для участия в игре следует приобрести специальную карточку и вычеркнуть в ней 6 любых квадратов, пронумерованных числами от 1 до 49. Чтобы выйграть наверняка, можно было бы запастись таким количеством карточек, какое необходимо для вычеркивания 6 номеров всеми возможными способами. Сколько этих способов?

Таким образом, успешное решение комбинаторной задачи зависит от правильного анализа ее условия, определения типа соединений, которые будут составляться, и выбора подходящей формулы для вычисления их количества.

Самостоятельная работа.
Вариант 1
1.                Сколькими способами можно обозначить вершины данного треугольника, используя буквы A, B, C, D, E и F?
2.                Курьер должен разнести пакеты в 7 различных учреждений. Сколько маршрутов может он выбрать?
3.                Сколькими способами можно разделить 6 различных конфет между тремя друзьями?
4.                Сколько различных маршрутов может избрать пешеход, решив пройти 9 кварталов, из них 5 на запад и 4 на юг?
5.                В магазине продают кепки трёх цветов: белые, красные и синие. Наташа и Лена покупают себе по одной кепке. Сколько существует различных вариантов покупок для этих девочек?
6.                Каждая из 5 подруг собирается вечером пойти либо в кино, либо на каток. Сколькими различными способами эти пять подруг смогли бы провести вечер?
Вариант 2
1.                Сколькими способами можно обозначить вершины куба буквами A, B, C, D, E, F, G, K?
2.                Сколькими способами можно разложить 12 различных деталей по трем ящикам?
3.                Сколькими способами могут быть распределены первая, вторая и третья премии между 13 участниками конкурса?
4.                В библиотеке Кате предложили на выбор из новых поступлений 10 книг и 4 журнала. Сколькими способами она может выбрать из них 3 книги и 2 журнала?
5.                Найти число различных способов, которыми можно записать в один ряд 6 плюсов и 4 минуса.
6.                В списке класса для изучения английского языка 15 человек. Сколько существует вариантов присутствия (отсутствия) этих людей на занятии?



При решении задач комбинаторики используют следующие правила:

П р а в и л о   с у м м ы. Если некоторый объект А может быть выбран из совокупности объектов m способами, а другой объект В может быть выбран n способами, то выбрать либо А, либо В можно m + n способами.
(Например, если на блюде лежат 7 яблок и 4 груши, то выбрать один плод можно 7+4=11 способами).


П р а в и л о   п р о и з в е д е н и я. Если объект А можно выбрать из совокупности объектов m способами и после каждого такого выбора объект В можно выбрать n способами, то пара объектов (А, В) в указанном порядке может быть выбрана mn способами.18. Комбинаторика. Размещения, перестановки, сочетания
Подсчитаем, например, сколько слов, содержащих 6 букв, можно составить из 33 букв русского алфавита при условии, что любые две стоящие рядом буквы различны (например, слово «корова» допускается, а слово «колосс» нет). При этом, разумеется можно писать бессмысленные слова. В этом случае на первое место у нас 33 кандидата. Но после того, как первая буква выбрана, вторую можно выбрать лишь 32 способами – ведь повторять первую букву нельзя. На третье место тоже 32 кандидата – первую букву уже можно повторить, а вторую – нельзя. Также убеждаемся, что на все места, кроме первого, имеется 32 кандидата. А так как число этих мест равно 5, то получаем ответ 33∙32∙32∙32∙32∙32=1107396236.

Задачи на непосредственное применение комбинаторных
 правил произведения и суммы:
1.                В отделе научно-исследовательского института работают несколько человек, причем каждый из них знает хотя бы один иностранный язык, 6 человек знают английский, 6 – немецкий, 7 – французский, 4 знают английский и немецкий, 3 – немецкий и французский, 2 – французский и английский, 1 человек знает все три языка. Сколько человек работает в отделе? Сколько из них знают только английский язык? Сколько человек знают только один язык?
2.                 Сколько чисел среди первых 100 натуральных чисел не делятся ни на 2, ни на 3, ни на 5?
3.                 Имеется 5 видов конвертов и 4 вида марок. Сколькими способами можно выбрать конверт и марку для посылки письма?
4.                 Сколькими способами можно выбрать на шахматной доске черный и белый квадраты, не лежащие на одной горизонтали или одной вертикали?
5.                 Имеется 20 тетрадей в линейку и 30 тетрадей в клетку. Необходимо выбрать две тетради одного вида. Сколько способов выбора двух тетрадей возможно, если учитывается порядок выбора тетрадей?
6.           Имеется 5 видов конвертов без марок и 4 вида марок. Сколькими способами можно выбрать конверт с маркой для посылки и письма?
7.           Сколькими способами можно выбрать гласную и согласную буквы из слова «здание»?
8.           Сколькими способами можно выбрать на шахматной доске белый и черный квадраты, не лежащие на одной горизонтали или одной вертикали?
9.           Сколько можно составить пятибуквенных слов из 7 гласных и 25 согласных букв, если гласные и согласные должны чередоваться?
10.      Сколько существует пятизначных четных чисел, в которых ни одна цифра не повторяется дважды?
11.      Сколько четырехбуквенных слов можно составить из букв слова «кибитка»?
12.      Сколькими способами можно посадить за круглый стол 5 мужчин и 5 женщин так, чтобы никакие два лица одного пола не сидели рядом?
13.      Сколькими способами можно выбрать 3 краски из имеющихся 5 различных красок?
14.      На школьном вечере присутствуют 12 девушек и 15 юношей. Сколькими способами можно выбрать из них 4 пары для танца?
15.      Во скольких девятизначных числах все цифры различны?
16.      Сколько четырехзначных чисел можно составить из цифр числа 123153?
17.      Сколько существует семизначных телефонных номеров, в первых трех цифрах которых не встречаются 0 и 9?
18.      Сколькими способами можно выбрать из натуральных чисел от 1 до 30 три натуральных числа так, чтобы их сумма была четной?
19.      На прямой взято p – точек, а на параллельной ей прямой еще g – точек. Сколько существует треугольников, вершинами которых являются эти точки?
20.      В комнате n лампочек. Сколько всего разных способов освещения комнаты, при которых горит ровно k лампочек?
21.      Сколько имеется четырехзначных чисел, у которых каждая следующая цифра меньше предыдущей?
22.      Сколькими способами можно рассадить n гостей за круглым столом?
23.      Имеется 10 различных книг и 15 различных журналов. Сколькими способами можно составить посылку из 3 книг и 5 журналов?
24.      Сколько трехзначных чисел, оканчивающихся цифрой 3?
25.      Сколько ожерелий можно составить из 7 различных бусин?
26.      Сколькими способами можно разбить множество из 20 элементов на два подмножества так, чтобы одно содержало 3 элемента, а другое – 17?
27.      Сколькими способами можно разложить на шахматной доске две ладьи так, чтобы они не били друг друга?
28.      Сколько различных двухзначных чисел можно составить из цифр 1, 3, 5, если цифры в числе могут повторяться?
29.      Сколько различных предсказаний о распределении 3 трудовых мест можно сделать, если в соревновании принимают участие 10 человек?
30.      Сколькими способами можно выбрать 4 числа из 10?
31.      В турнире по шахматам каждый участник сыграл с каждым по одной партии, всего было сыграно 36 партий. Определите число участников турнира.
32.      В классе имеется 6 сильных математиков. Сколькими способами из них можно составить команду на районную олимпиаду по математике, если от класса можно послать команду от 2 до 4 человек?
33.      Сколько различных направлений задают на плоскости вершины треугольника?
34.      Из колоды в 36 карт наугад выбирают 2 карты. Сколько возможно случаев, в которых обе карты окажутся тузами.

 Задачи:
Задача 1

Сколькими способами можно составить пятизначное число из цифр 1, 3, 5, 7, 9? (Выберите подходящие варианты ответа)

А) 720 Б) 120 В) 5! Г) другой ответ  1 б.     

Задача 2

Сколькими способами можно выбрать двух дежурных из 20 человек? 1 б.     

Задача 3

Сколькими способами можно из 30 человек назначить председателя и секретаря? 1 б.     

Задача 4

Во взводе 5 сержантов и 30 солдат. Сколькими способами можно выбрать наряд из двух сержантов и трёх солдат?  1,5 б.  


Задача 5

Из 11 роз и 6 гербер нужно составить букет, в котором 3 розы и 2 герберы. Сколько разных букетов можно составить?

Задача 6


1. Сколькими способами можно разместить пять различных книг на полке?

Задача 7
2. Сколько трехзначных чисел с разными цифрами можно составить из цифр 0, 1, 3, 6, 7, 9?
Задача 8
3. Из десяти членов команды надо выбрать капитана и его заместителя. Сколькими способами это можно сделать?

Задача9
5. Выпускники экономического института работают в трех различных компаниях: 17 человек - в банке, 23 - в фирме и 19 - в налоговой инспекции. Найдите вероятность того, что случайно встреченный выпускник работает в фирме.
Задача10
6. Мишень представляет собой три круга (один внутри другого), радиусы которых равны 3, 7 и 8 см. Стрелок выстрелил, не целясь, и попал в мишень. Найдите вероятность того, что он попал в средний круг, но не попал в маленький круг
                      

                             Элементы теории вероятности.
Предмет теории вероятностей. События.
В обыденной жизни, давая какие-либо прогнозы, мы нередко употребляем выражения «вероятность», «вероятно». Например, мы говорим: «Вероятно, сегодня вечером будет дождь». Причём мы отдаём себе отчёт, в каких событиях «мало» вероятности, в каких – «много».
Французский естествоиспытатель Ж.Л.Л. Бюффон в XVIII столетии подбрасывал монету 4040 раз – герб выпал 2048 раз. Математик К. Пирсон в нале прошлого века подбрасывал её 24000 раз – герб выпал 12012 раз. В 70-х г.г. XX века американские естествоиспытатели повторили опыт. При 10000 подбрасываниях герб выпал 4979 раз. Значит, результаты бросаний монеты, хотя каждое из них и является случайным событием, при неоднократном повторении подвластны объективному закону.
Теория вероятностей и изучает закономерности, управляющие массовыми случайными событиями.
С случайными событиями (или явлениями), то есть с такими, которые могут либо произойти, либо не произойти в результате какого-то испытания, мы встречаемся в жизни очень часто.
Ученик извлекает билет – это испытание. Появление при этом билета №13 – случайное событие, билета №5 – другое случайное событие. Выбор наугад какой-то страницы в книге – это испытание. То, что первой буквой на этой странице окажется «м» – это случайное событие.
Например, рассмотрим следующие события:

№№
Условие
Исход
А1
При нагревании проволоки
её длина увеличится
А2
При бросании игральной кости
выпадут 4 очка
А3
При бросании монеты
выпадет герб
А4
При осмотре почтового ящика
найдены три письма
А5
При низкой температуре
вода превратилась в лёд

События А1, А5 произойдут закономерно, А2, А3, А4 – случайные.
Событие, которое в данном испытании неизбежно наступит, называется достоверным, а событие, которое в данном испытании никогда не появится – невозможным.
Какие из следующих событий достоверны:

А
Два попадания при трёх выстрелах
+
В
Выплата рубля семью монетами
+
С
Наугад выбранное случайное число не больше 1000
+
D
Наугад выбранное число, составленное из цифр 1,2,3 без повторений, меньше 400
+
E
Выпадение семи очков при бросании игральной кости
-
F
Получение пятёрки на экзамене
+

Назовите невозможные события:

А
Вода в реке замерзла при температуре +25°С
+
В
Появление слова «мама» при случайном наборе букв м, м, а, а
-
С
Появление сразу трёх лайнеров над аэропортом
+
D
Составление трёхзначного числа, состоящего из цифр 1,2,3 и кратного 5
+
E
Появление 17 очков при бросании трёх игральных костей
-

Упражнения:
Для каждого из этих событий определить, каким оно является: невозможным, достоверным или случайным.
1.                Из 26 учащихся класса двое справляют свой день рождения: 1) 25 января; 2) 31 июня.
2.                Случайным образом открывается художественное произведение и находится второе слово на левой странице. Это слово начинается: 1) с буквы М; 2) с буквы Ъ.
3.                Из списка журнала 9 класса (в котором есть и мальчики, и девочки) случайным образом выбран ученик: 1) это мальчик; 2) выбран ученик, которому 15 лет; 3) выбранному ученику 15 месяцев; 4) этому ученику больше двух лет.
4.                Сегодня в Кирове барометр показывает нормальное атмосферное давление. При этом: 1) вода в кастрюле закипит при температуре 70°С; 2) когда температура упала до -3°С, вода в луже замёрзла.
5.                В нашей школе учатся 758 учеников. Событие А={в школе есть ученики с совпадающими днями рождения} является случайным или достоверным. Выясните, произошло ли это событие в вашем классе?
6.                Среди 150 билетов школьной благотворительной лотереи 30 выигрышных. Сколько билетов надо купить, чтобы событие А={вы ничего не выиграете} было невозможным?
7.                В 10 «Г» классе учится 16 мальчиков и 10 девочек. Какие из следующих событий являются невозможными, какие случайными, какие – достоверными:
А={ в классе есть два человека, родившихся в разные месяцы};
В={в классе есть два человека, родившихся в одном месяце};
С={в классе есть два мальчика, родившихся в одном месяце};
D={в  классе есть две девочки, родившиеся в одном месяце};
Е={все мальчики родились в разные месяцы};
F={все девочки родились в разные месяцы};
К={есть мальчик и девочка, родившиеся в одном месяце};
М={ есть мальчик и девочка, родившиеся в разные месяцы}.
8.                Около школы останавливаются автобусы трёх маршрутов, идущих в сторону лесозавода: № 5, № 13 и № 23. Интервал в движении автобусов каждого маршрута колеблется от 8 до 10 минут. Когда Саша, Маша, Кристина и Катя подошли к остановке, от неё отошёл автобус № 13, а ещё через 6 минут подошёл автобус № 5. После этого каждый из ребят высказал своё мнение о том, автобус какого маршрута будет следующим:
Саша: Следующим обязательно будет № 23.
Маша: Возможно, что следующим будет № 23.
Кристина: Возможно, что следующим будет № 13.
Катя: Невозможно, что следующим будет № 5.
С кем из ребят вы согласны, а с кем нет? Объясните сделанный выбор.
9. На дорогу от дома до школы Миша тратит от 10 до 15 минут, если идёт пешком, и от 2 до 3 минут, если едет на автобусе. При каких интервалах движения автобусов событие А=={по пути в школу Мишу обгонит хотя бы один автобус} будет невозможным, при каких – случайным, при каких – достоверным?
После знакомства с понятием «случайное событие» учащиеся должны уметь приводить примеры таких событий из жизни и отличать их от неслучайных.

Занятие №2. Виды случайных событий.
События называют несовместными, если появление одного из них исключает появление других событий в одном и том же испытании. В противном случае события называются совместными.
Например, события «пошел дождь» и «наступило утро» являются совместными, а события «наступило утро» и «наступила ночь» - несовместными.
Задачи:
1.                В сыгранной Катей и Ларисой партии в шахматы определить совместные и несовместные события, если: 1) Катя выиграла, Лариса проиграла; 2) Катя проиграла, Лариса проиграла.
2. Из событий: 1) «идёт дождь»; 2) «на небе нет ни облака»; 3) «наступило лето» - составить всевозможные пары и выявить среди них пары совместных и пары несовместных событий.
3. Из событий: 1) «наступило утро»; 2) «сегодня по расписанию 6 уроков»; 3) «сегодня 1 января»; 4) «температура воздуха в Мариинске +30°С» - составить всевозможные пары и выявить среди них пары совместных и пары несовместных событий.
События называют равновозможными, если есть основания считать, что ни одно из них не является более возможным, чем другое.
Например, «выпадение герба» и «выпадение цифры» при бросании монеты – равновозможные события. «Изъятие из набора домино дубля» и «изъятие из набора домино костяшки с разными очками» - неравновозможные события, так как дублей в наборе домино всего 7, а остальных костяшек 21.
Несколько событий образуют полную группу, если в результате испытания появится хотя бы одно из них.
Например, попадание и промах при выстреле; появление 1, 2, 3, 4, 5, 6 очков при бросании игральной кости.
Если два единственно возможных события образуют полную группу, то их называют противоположными (выигрыш и не выигрыш, попадание и промах). Если одно из двух противоположных событий обозначено через А, то другое принято обозначать .
Задачи:
1. Ниже перечислены разные события. Укажите противоположные им события.
а) Мою новую соседку по парте зовут или Таня, или Аня.
б) Из пяти выстрелов в цель попали хотя бы два.
в) На контрольной работе я не решил, как минимум, три задачи из пяти.
2. Назовите событие, для которого противоположным является такое событие:
а) на контрольной работе больше половины класса получили пятёрки;
б) все семь пулек в тире у меня попали мимо цели;
в) в нашем классе все умные и красивые;
г) в кошельке у меня есть три рубля одной монетой, или три доллара одной бумажкой.
Рассматривая события как множества, можно определить действия над событиями. (Введение понятий суммы и произведения событий позволяет подготовить действия над вероятностями).
a)                Объединение событий или сумма событий - AÈB или А+В - событие, содержащее все элементы А и В.
Пример 1.
Испытание: бросаем игральную кость.
Событие А: выпало четное число очков.
Событие B: выпало число очков меньше, чем 4.
Событие A+B: выпало 1, 2, 3, 4 или 6 очков.
Рисунок к примеру 4Пример 2.
Событие А: круг.
Событие B: квадрат.
Событие A+B: заштриховано.
b)                Пересечение событий или произведение событий - AÇB или АВ - событие, содержащее только общие элементы А и В.
Пример 3.
Испытание: бросаем игральную кость.
Событие А: выпало четное число очков.
Событие B: выпало число очков меньше, чем 4.
Рисунок к примерам 6 и 8Событие AB: выпало 2 очка.
Пример 4.
Событие А: круг.
Событие B: квадрат.
Событие AB: заштриховано.
Какими являются события C, D, E?
Задачи:
1.                Событие А – «попадание в мишень первым выстрелом», событие В – «попадание в мишень вторым выстрелом». В чем состоит событие А+В?
2.                Событие А – «ученик учится без троек», событие В – «ученик учится без двоек», событие С – «ученик не отличник». Сформулируйте: А+В+С.
3.                Событие А – «лотерейный выигрыш 10 руб.», событие В – «лотерейный выигрыш 20 руб.», событие С – «лотерейный выигрыш 30 руб.», событие D – «лотерейный выигрыш 40 руб.». В чем состоит событие А+В+С+D?
4.                Событие А – «появление нечетного числа очков при бросании игральной кости», событие В – «появление 3 очков при бросании игральной кости», событие С – «появление 5 очков при бросании игральной кости». В чем состоят события АВС, АВ, АС, ВС?
5.                Проводятся две лотереи. Если событие А1 – «выигрыш по билету первой лотереи» и событие А2 – «выигрыш по билету второй лотереи», то что означают события: А1А2+А2, А1+А21А2?
6.                Известно, что события А и В произошли, а событие С не наступило. Определите, наступили ли следующие события: А+ВС, (А+В)С, АВ+С, АВС.
7.                Турист из пункта А в пункт В может попасть двумя дорогами. обозначим события: А1 – «он пошел первой дорогой», А2 – «он пошел второй дорогой».
Из пункта В в пункт С ведут три дороги. Обозначим события: В1 – «он пошел первой дорогой», В2 – «он пошел второй дорогой», В3 – «он пошел третьей дорогой».
Применяя понятия суммы и произведения, а также противоположного события, постройте события, состоящие в том, что:
-                   от А до В он выбрал дорогу наугад, а от В до С пошел третьей дорогой;
-                   от А до В он пошел первой дорогой, а от В до С – дорогой, выбранной наугад;
-                   от А до В он пошел не первой дорогой, а от В до С – не третьей;
-                   он дошел от А до С.
Занятие №3. Эксперименты и их исходы.
Первый шаг на пути ознакомления учащихся с понятием вероятность состоит в длительном экспериментировании, то есть в многочисленных манипуляциях с разнородными предметами (игральными костями, волчками, монетами, шарами и прочими).
Для проведения экспериментов учащихся лучше разбить на группы по 2-3 человека, один из которых будет фиксировать результаты эксперимента, а остальные проводить его.
Могут быть предложены следующие задания-эксперименты:
Задание №1. 100 раз подбросить монету и зафиксировать количество выпадений «орла» и «решки».
Задание №2. 100 раз подбросить кнопку и зафиксировать количество раз, когда кнопка упала острием вниз и количество раз, когда кнопка упала острием вверх.
Задание №3. Выберите какой-нибудь текст, содержащий 150 слов. Подсчитайте число слов, составленных из 6 букв.
Задание №4. Выберите 7 строк произвольного текста. Подсчитайте, сколько раз встречаются в тексте буквы о, е, а, ю.
Задание №5. 100 раз подбросить игральную кость и зафиксировать количество выпадений 6.
После проведения экспериментов целесообразно ввести понятия эксперимента и его исхода. Четкое определение и разграничение при проведении реальных физических экспериментов таких понятий, как исход эксперимента и событие, возможное в эксперименте, в дальнейшем поможет избежать многих трудностей при введении понятия вероятности случайного события.
    Занятие №4. Классическое определение вероятности.
Вероятность – одно из основных понятий теории вероятностей. Существует несколько определений этого понятия. Приведем определение, которое называют классическим. Далее укажем слабые стороны этого определения и приведем другие определения, позволяющие преодолеть недостатки классического определения.
Рассмотрим пример. Пусть в урне содержится 6 одинаковых, тщательно перемешанных шаров, причем 2 из них – красные, 3 – синие и 1 – белый. Очевидно, возможность вынуть наудачу из урны цветной шар больше, чем возможность извлечь белый шар. Можно ли охарактеризовать эту возможность числом? Оказывается, можно. Это число и называют вероятностью события. Таким образом, вероятность есть число, характеризующая степень возможности появления события.
Поставим перед собой задачу дать количественную оценку возможности того, что взяты наудачу шар цветной. Появление цветного шара будем рассматривать в качестве события А. Каждый из возможных результатов испытания (испытание состоит в извлечении шара из урны) назовем элементарным исходом (элементарным событием). Легко видеть, что эти исходы образуют полную группу попарно несовместных событий (обязательно появится только один шар) и они равновозможны (шар вынимают наудачу, шары одинаковые и тщательно перемешаны).
Те элементарные исходы, в которых интересующее нас событие наступает, назовем благоприятствующими этому событию.
Необходимо пояснить учащимся различие между событием и элементарным событием.
Отношение числа благоприятствующих событию А элементарных исходов к их общему числу, называют вероятностью события А и обозначают Р(А). В рассматриваемом примере всего элементарных исходов 6; из них 5 благоприятствуют событию А. Следовательно, вероятность того, что взятый шар окажется цветным, равна Р(А)=5/6.Это число и дает ту количественную оценку степени возможности появления цветного шара, которую мы хотели найти. Дадим теперь определение вероятности.
Вероятностью события А называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу.
, где m - число элементарных исходов, благоприятствующих А; n – число всех возможных элементарных исходов испытания.
m
 
P(A)=
 
n
 
m
 
n
 

Полезно формуле вероятности события придать наглядную иллюстрацию.

Из определения вероятности вытекают следующие ее свойства:
Свойство 1. Вероятность достоверного события равна единице.
Свойство 2. Вероятность невозможного события равна нулю.
Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.
Доказательства данных свойств могут быть предложены учащимся в качестве домашнего задания.
Задачи:
1.                Для новогодней лотереи отпечатали 1500 билетов, из которых 120 выигрышных. Какова вероятность того, что купленный билет окажется выигрышным?
2.                Для экзамена подготовили билеты с номерами от 1 до 25. какова вероятность того, что взятый наугад учеником билет имеет: 1) однозначный номер; 2) двузначный номер?
3.                Ученик при подготовке к экзамену не успел выучить один из тех 25 билетов, которые будут предложены на экзамене. Какова вероятность того, что ученику достанется на экзамене выученный билет?
4.                Женя купил 2 лотерейных билета, и один из них оказался выигрышным. Можно ли утверждать, что вероятность выигрыша в лотереи ?
5.                Для школьного новогоднего вечера напечатали 125 пронумерованных пригласительных билетов, между которыми предполагается разыграть главный приз. Какова вероятность, что номер счастливчика будет оканчиваться: а) на тройку; б) на девятку? в) Вова получил пригласительный билет с номером 33, а Таня – 99. Верно ли, что у Вовы больше шансов получить главный приз?
6.                Два друга живут в одном доме, а учатся в разных классах. Уроки в школе заканчиваются в интервале от 13 до 14 часов. После занятий они договариваются ждать друг друга на автобусной остановке в течение 20 минут. Сколько приблизительно раз за год им удаётся поехать домой вместе, если в году 200 учебных дней?

Занятие №5. Решение вероятностных задач с помощью формул комбинаторики.
При изучении этой темы надо, чтобы учащиеся отчетливо представляли себе роль сочетаний, размещений и перестановок в различных вероятностных задачах и научились по формулировкам задач определять, какой из видов соединений будет использован при решении той или иной задачи. Здесь можно руководствоваться следующим: если множество исходов составляют всевозможные комбинации из n элементов по k, то в задаче будут фигурировать сочетания; если же всевозможные комбинации из n элементов по n, то в задачах идет речь о перестановках; размещения будут тогда, когда речь идет о порядке элементов в рассматриваемых комбинациях.
Задачи:
1.                Набирая номер телефона, абонент забыл последние две цифры и, помня лишь, что эти цифры различны, набрал их наудачу. Найти вероятность того, что набраны нужные цифры.
2.                В классе 30 учащихся. Из них 12 мальчиков, остальные девочки. Известно, что к доске должны быть вызваны двое учащихся. Какова вероятность, что это девочки?
3.                Набирая номер телефона, состоящий из 7 цифр, Антон забыл, в какой последовательности идут три последние цифры. Помня лишь, что это цифры 1, 5 и 9, он набрал первые 4 цифры, которые знал, и наугад комбинацию из цифр 1, 5 и 9. какова вероятность того, что Антон набрал верный номер?
4.                В пачке находятся одинаковые по размеру 7 тетрадей в линейку и 5 в клетку. Из пачки наугад берут 3 тетради. Какова вероятность того, что все 3 тетради окажутся в клетку?
5.                Четыре билета на ёлку распределили по жребию между 15 мальчиками и 12 девочками. Какова вероятность того, что билеты достанутся 2 мальчикам и 2 девочкам?
6.                На полке 12 книг, из которых 4 – это учебники. С полки наугад снимают 6 книг. Какова вероятность того, что 3 из них окажутся учебниками?


Занятие №8. Теорема сложения вероятностей.
Из четырех теорем о сложении вероятностей (для двух несовместных событий, для n несовместных событий (обобщение), для событий, образующих полную группу и для противоположных событий) практический интерес для слушателей курса представляют лишь две теоремы: первая и третья. Обе они часто используются при решении вероятностных задач, и поэтому их следует подробно с доказательством рассмотреть на занятии. Теорему о противоположных событиях (как частный случай третьей теоремы) можно поручить рассказать одному из учащихся.
Теорема 1. Пусть события А и В – несовместные, причем вероятности этих событий известны. Тогда вероятность появления одного из двух несовместных событий, безразлично какого, равна сумме вероятностей этих событий:
Р(А+В)=Р(А)+Р(В).
Доказательство. Введем обозначения: n – общее число возможных элементарных исходов испытания; m1 – общее число исходов, благоприятствующих событию А; m2 – общее число исходов, благоприятствующих событию В.
Число элементарных исходов, благоприятствующих наступлению либо события А, либо события В, равно m1+m2. Следовательно,
Р(А+В)=.
Приняв во внимание, что  и , окончательно получим
Р(А+В)=Р(А)+Р(В).
Теорема 2. Вероятность появления одного из нескольких попарно несовместных событий, безразлично какого, равна сумме вероятностей этих событий:
Р(А12+…+Аn)=Р(А1)+Р(А2)+…+Р(Аn).
Теорема 3. Сумма вероятностей событий А1, А2, …, Аn, образующих полную группу, равна 1:
Р(А1)+Р(А2)+…+Р(Аn)=1.
Доказательство. Так как появление одного из событий полной группы достоверно, а вероятность достоверного события равна единице, то
Р(А12+…+Аn)=1. (*)
Любые два события полной группы несовместны, поэтому можно применить теорему сложения:
Р(А12+…+Аn)=Р(А1)+Р(А2)+…+Р(Аn). (**)
Сравнивая (*) и (**), получим
Р(А1)+Р(А2)+…+Р(Аn)=1.
Теорема 4. Сумма вероятностей противоположных событий равна 1:
Р(А)+Р()=1.
Задачи:
1.                В урне 30 шаров: 10 красных, 5 синих и 15 белых. Найти вероятность появления цветного шара.
2.                На стеллаже библиотеки в случайном порядке расставлено 15 учебников, причем 5 из них в переплете. Библиотекарь берет наудачу три учебника. Найти вероятность того, что хотя бы один из взятых учебников окажется в переплете. (Решить двумя способами: с помощью 1 и 4 теорем).
3.                Производится бомбометание по трем складам боеприпасов, причем сбрасывается одна бомба. Вероятность попадания в первый склад 0,01; во второй 0,008; в третий 0,025. При попадании в один из складов взрываются все три. Найти вероятность того, что склады будут взорваны.
4.                Круговая мишень состоит из трех зон: I, II, III. Вероятность попадания в первую зону при одном выстреле 0,15, во вторую 0,23, в третью 0,17. найти вероятность промаха.

Занятие №9. Теорема умножения вероятностей.
Перед тем как излагать теорему умножения вероятностей необходимо ввести понятие условной вероятности. Привести учащихся к этому понятию поможет разбор примера.
Пример: Из ящика, в котором 3 белых и 3 черных шаров, наугад вынимают последовательно один за другим два шара. Какова вероятность появления белого шара при втором испытании, если при первом испытании был извлечен черный шар?
Условная вероятность события В при условии, что событие А уже наступило, по определению равна
 (Р(А)>0).
Опираясь на определение условной вероятности, учащиеся без труда смогут сформулировать теорему о вероятности совместного появления двух событий.
Теорема 1. Вероятность совместного появления двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предложении, что первое событие уже наступило:
Р(АВ)=Р(А)РА(В).
Пусть вероятность события В не зависит от появления события А.
Событие В называют независимым от события А, если появление события А не изменяет вероятности события В, то есть
РА(В)=Р(В)   или   РВ(А)=Р(А).
Теорема 2. Вероятность совместного появления двух независимых событий равна произведению их вероятностей:
Р(АВ)=Р(А)Р(В).
На практике о независимости событий заключают по смыслу задачи. Например, вероятности поражения цели каждым из двух орудий не зависят от того, поразило ли цель другое орудие, поэтому события «первое орудие поразило цель» и «второе орудие поразило цель» независимы.
Задачи:
1.                Среди ста лотерейных билетов есть 5 выигрышных. Найти вероятность того, что два наудачу выбранные билета окажутся выигрышными.
2.                В коробке 9 одинаковых радиоламп, 3 из которых были в употреблении. В течение рабочего дня мастеру для ремонта аппаратуры пришлось взять две радиолампы. Какова вероятность того, что обе взятые лампы были в употреблении?
3.                У сборщика имеется 3 конусных и 7 эллиптических валиков. Сборщик взял один валик, а затем второй. Найти вероятность того, что первый из взятых валиков – конусный, а второй – эллиптический?
4.                Бросают два игральных кубика. Какова вероятность того, что на первом кубике выпадет четное число очков, а на втором – число, меньшее 6?
5.                Имеется 3 ящика, содержащих 10 деталей. В первом ящике 8, во втором 7 и в третьем 9 стандартных деталей. Из каждого ящика наудачу вынимают по одной детали. Найти вероятность того, что все три вынутые детали окажутся стандартными.

Задачи:
1.                Подбрасываем две монеты. Какова вероятность выпадения хотя бы одного герба?
2.                Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: р1=0,7; р2=0,8. Найти вероятность попадания при одном залпе (из обоих орудий) хотя бы одним из орудий.
3.                Отдел технического контроля проверяет на стандартность по двум параметрам серию изделий. Было установлено, что у 8 из 25 изделий не выдержан только первый параметр, у 6 изделий – только второй, а у 3 изделий не выдержаны оба параметра. Наудачу берется одно из изделий. Какова вероятность того, что оно не удовлетворяет стандарту?
4.                В лотерее выпущено n билетов, m из которых выигрывают. Гражданин купил k билетов. Какова вероятность того, что один из купленных билетов выигрышный?
5.                В урну, содержащую 2 шара, опущен белый шар, после чего из нее наудачу извлечен один шар. Найти вероятность того, что извлеченный шар окажется белым, если равновозможны все возможные предположения о первоначальном составе шаров (по цвету).
6.                Из 10 учеников, которые пришли на экзамен по математике, трое подготовились отлично, четверо – хорошо, двое – удовлетворительно, а один совсем не готовился – понадеялся на то, что все помнит. В билетах 20 вопросов. Отлично подготовившиеся ученики могут ответить на все 20 вопросов, хорошо – на 16 вопросов, удовлетворительно – на 10, и не подготовившиеся – на 5 вопросов. Каждый ученик получает наугад 3 вопроса из 20. Приглашенный первым ученик ответил на все три вопроса. Какова вероятность того, что он отличник?

Занятие №11. Формула Бернулли. Закон больших чисел.
Формула Бернулли намного упрощает путь решения задач в том случае, когда опыты повторяются независимо друг от друга и вероятность интересующего нас события не меняется.
Вероятность того, что при повторных испытаниях событие А наступит m раз и не наступит n-m раз находится по формуле:
.
Вычисления по формуле Бернулли при больших значениях n и m затруднительны. В математике установлены приближенные формулы, позволяющие находить приближенные значения для Рn(m) и, что еще важнее для практики, суммы значений Рn(m), таких, что дробь  (относительная частота появления события А) лежит в данных границах.
По формуле Бернулли вероятность того, что в серии из 100 подбрасываний монеты все 100 раз выпадет герб, равна , то есть примерно 10-30. Не столь мала, но все, же ничтожна вероятность того, что цифра выпадет не более 10 раз. Наиболее вероятно, что число выпадений герба будет мало отличаться от 50.
Вообще при большом числе испытаний относительная частота появления события, как правило, мало отличается от вероятности этого события. Математическую формулировку этого качественного утверждения дает принадлежащий Я. Бернулли закон больших чисел, который в уточненной П.Л. Чебышевым гласит:
Теорема. Пусть вероятность события А в испытании s равна р, и пусть проводятся серии, состоящие из n независимых повторений этого испытания. Через m обозначим число испытаний, в которых происходило событие А. Тогда для любого положительного числа e выполняется неравенство
.
Эту теорему лучше давать без доказательства по следующим причинам: во-первых, на доказательство уйдет много времени и, во-вторых, самим доказательством можно «затмить» идею закона больших чисел.
Задачи:
1.                Подбрасываем монету 10 раз. Какова вероятность двукратного появления герба?
2.                Вероятность того, что изделие не пройдет контроля, равна 0,125. какова вероятность того, что среди 12 изделий не будет ни одного забракованного контролером?
3.                вероятность того, что расход электроэнергии в продолжение одних суток не превысит установленной нормы, равна р=0,75. Найти вероятность того, что в ближайшие 6 суток расход электроэнергии в течение 4 суток не превысит нормы.
4.                С разных позиций по мишени выпускают 4 выстрела. Вероятность попадания первым выстрелом примерно 0,1, вторым – 0,2, третьим – 0,3 и четвертым – 0,4. Какова вероятность того, что все четыре выстрела - промахи?
5.                Вы играете в шахматы с равным по силе партнером. Чего следует больше ожидать: трех побед в 4 партиях или пяти побед в 8 партиях?
6.                Сколько раз придется бросать игральную кость, чтобы вероятнейшее число появления шестерки было бы 32?
7.                Какова вероятность равенства с точностью до 0,1 при 100 опытах?

Занятие №13. Самостоятельная работа.
Изучение случайных событий желательно завершить самостоятельной работой, в которой одну-две задачи надо решить как можно большим числом способов.
Самостоятельная  работа:
Вариант 1
1.                Среди облигаций займа 25% выигрышных. Найдите вероятность того, что из трех взятых облигаций хотя бы одна выигрышная.
2.                Найти вероятность  по данным вероятностям: Р(А)=а, Р(В)=b, Р(А+В)=с.
3.                Могут ли несовместные события быть в то же время независимыми и наоборот? Привести примеры.


Тесты по теме
 «Элементы комбинаторики и теории вероятностей:
Сколькими способами можно составить расписание одного учебного дня из 5 различных уроков?


1)        30                        2)        100                3)        120                4) 5


2. В 9«Б» классе 32 учащихся. Сколькими способами можно сформировать команду из 4 человек для участия в математической олимпиаде?


1)        128                        2)        35960                3) 36                        4)46788


3. Сколько существует различных двузначных чисел, в записи которых можно использовать цифры 1, 2, 3, 4, 5, 6, если цифры в числе должны быть различными?


1)        10                        2) 60                        3) 20                        4) 30


4. Вычислить: 6! -5!


1)        600                        2)        300                3)        1                4)  100


6. Бросают три монеты. Какова вероятность того, что выпадут два орла и одна решка?


1)  0,2                              2)  0,5                        3) 0,125                        4)0,36  


7. В денежно-вещевой лотерее на 1000000 билетов разыгрывается 1200 вещевых и 800 денежных выигрышей. Какова вероятность выигрыша?


1)        0,02                        2)        0,00012                3) 0,0008                        4) 0,002


Сколько различных пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5?


1)                100                2)        30                3)        5                4)     120


2. Имеются помидоры, огурцы, лук. Сколько различных салатов можно приготовить, если в каждый салат должно входить 2 различных вида овощей?


1)                3                2)        6                3)        2                4)     1


3. Сколькими способами из 9 учебных предметов можно составить расписание учебного дня из 6 различных уроков.


1)                10000                2)        60480                3)        56                4)    39450




5. В игральной колоде 36 карт. Наугад выбирается одна карта. Какова вероятность, что эта карта – туз?




6. Бросают два игральных кубика. Какова вероятность того, что выпадут две четные цифры?


1)         0,25                        2)                        3)  0,5                        4)  0,125


7. В корзине лежат грибы, среди которых 10% белых и 40% рыжих. Какова вероятность того, что выбранный гриб белый или рыжий?


1)                0,5                2)        0,4                3)        0,04                4)  0,8





Учебник « Алгебра и начала анализа» Нелин В.А. 11 класс Пар.29-36





 

Комментариев нет:

Отправить комментарий